
FEDIT Help
FORMATTED EDIT (FEDIT) CUSTOM CONTROL is a powerful extension of    the standard    MS
Windows Edit control. Designed    as a superclass of the standard EDIT control,    it provides
all facilities needed to ensure that the data received by the program is correct.    It    relieves
application programmer of the burden of verifying the validity of data, providing more time
to concentrate on the business flow of the application. It gives total control of the data by
embedding intelligence into Resource File (.RC).    It comes as a Dynamic Link Library (DLL)   
and it is installable into the Borland Resource Workshop and Microsoft Dialog Editor.    
The DLL contains over 60 API functions and 20 messages that are used along with standard   
MS-Windows API procedures and messages to manipulate FEDIT control. When installed,
FEDIT becomes an integral part of your Windows programming environment and provides
new functionality to your applications.

Designing dialogs
Data styles and formats
Features overview
Application Programmer Interface
FEDIT in your program

Features
The following features are included in the FEDIT custom control:

- Support for 5 main data styles. You can set the desired behavior for all your fields
by selecting the style and setting up a Formatting Mask string.    The Formatting
string can be changed dynamically by the application in order to display and accept
data in a different format.

- Installable into Microsoft Dialog Editor and Borland Resource Workshop.
- Support for the required and optional fields. FEDIT allows an application programmer

to specify which fields or even which parts of the field    must be filled by a user.
- Support of the insert and overwrite editing modes.
- Support of the clipboard    and reformatting values through clipboard.
- Support of the symbolic names for the controls.
- 19 date and time manipulation procedures.
- A set of formattting    procedures for data conversion and string manipulation    .

Support of all standard MS-Windows EDIT control style features.

Next FEDIT features are described in this section:

Field validation
Using the clipboard
Symbolic names

Designing Dialog Boxes
   
There are two ways to create an FEDIT control in a dialog box:

1. By calling    CreateWindow() function;
2. By using a template from a resource file (.RC). The resource file can be created    with:

- Microsoft Dialog Editor
- Borland Resource Workshop TM
- A text editor

Using Microsoft Dialog Editor
The Dialog Editor can automate the process of designing dialog boxes with FEDIT controls.
You can see your FEDIT controls and test them as you design your dialog boxes. The Dialog
Editor automatically creates resource scripts for you.

This chapter explains how to create, modify and test FEDIT controls using the Dialog Editor.
For the complete description of the Dialog Editor, please refer to the Microsoft
documentation.

To install FEDIT.DLL    into Microsoft Dialog Editor:

1. Select    Open Custom command from the FILE menu
2. Enter: <full_path>\FEDIT.DLL.
3. Press OK.

To create a new FEDIT control:

1. Create a new dialog or open an existing one.
2. Click the Custom Control (bottom right) tool on the Toolbox. If you have more then

one custom control installed, the Select Custom Control dialog box appears.
3. From the Available Controls list box, select the FEDIT control.
4. Choose OK.
5. Position the cursor inside your dialog.    Drop the control by clicking the mouse button.

To specify FEDIT control properties:

1. Double click the FEDIT control to open its Styles dialog box. You can also open the
Styles dialog box for the currently selected control by pressing ENTER or choosing the
Styles command from the Edit menu.

2. Select the desired format style and enter the format string. You can also enter the
name and modify other attributes of the control.

3. Press OK button to accept changes or CANCEL to abort modification. You can obtain
the on-line help by pressing the HELP button.

To see how the FEDIT control works, choose the Test Mode command from the Options menu.
The FEDIT control becomes operational with a default or empty string in it. You can now type
in the characters to check the control's behavior. To quit Test Mode, choose the Test Mode
command from the Options menu, or press Alt+F4.

Using Borland Resource Workshop
The Resource Workshop can automate the process of designing dialog boxes with FEDIT
controls. You can see your FEDIT controls and test them as you design your dialog boxes.
The Resource Workshop automatically creates resource scripts for you.

This chapter explains how to create, modify and test FEDIT controls, using the Resource
Workshop. For the complete description of the Resource Workshop , please refer to the
Borland documentation.

To install FEDIT into Borland Resource Workshop:

1. Create a new dialog or select the existing one. The Resource Workshop brings up the
Dialog Editor window.

2. Select the Install Control Library command form the Options menu.
3. Enter <full_path>\FEDIT.DLL
4. Press OK. A new item    (F) will appear in the Toolbox, that represents the FEDIT

control class.

To create a new FEDIT control:

1. Create a new project or open an existing one. Create a new dialog or select the one
you have. The Resource Workshop brings up the Dialog Editor window.

2. It is recommended to include the FEDIT.H file in all resource files, that define FEDIT
custom controls.    If you did not add it to your project    before, then:
- Select the Add to project ... command of the file menu.
- Select H    c Header from the File type listbox.
- Enter the <full_path>\FEDIT.H into the File name edit box.
- Press OK.

3. Click the (F)    icon    int the Toolbox. The cursor will change its shape to the (F). Drag
the cursor into the dialog box and release the mouse button to place the control into
the dialog.

3a.      You can also click the 'key' icon in the Toolbox, or select 'Custom...' item from the
Options menu. The New custom control dialog box appears. Select FEDIT class and
press OK button. Move you cursor into the dialog box. The cursor will change its
shape to the cross. Click the left button to place the control into the dialog.

To specify FEDIT control properties:

1. Double click the FEDIT control to open it's Styles dialog box. You can also open the
Styles dialog box for the currently selected control by pressing ENTER or choosing the
Styles... command from the Control menu.

2. Select the desired format style and enter the format string. You can also enter the
name and modify other attributes of the control.

3. Press OK button to accept changes or CANCEL to abort modification. You can obtain
the on-line help by pressing the HELP button.

To see how the FEDIT control works, select the Test icon in the toolbox or choose the Test
Dialog command from the Options menu. The FEDIT control becomes operational with a
default or empty string in it. You can now type in the characters to check the control's
behavior.

To quit Test Mode, press the Escape key, or choose the Test Dialog command from the
Options menu, or press Alt+F4.

Using Text Editor
To specify a new FEDIT control for add to the dialog template in    your resource file a new
line in the next format:

CONTROL    format,    id,    "FEDIT",    style,    x,    y,    widht,    height

where

format Specifies any valid FEDIT format string    (See Data Styles and Formats
topic. for more details) and a name for the control, enclosed in double
quotation marks. A special character \206 is used to separate the
format from the name.

id Specifies the control identifier. This value must be an integer in the
range 0 through 65,535 or a simple expression that evaluates to a
value in that range.

style Specifies the control styles. This value can be a combination of the
FEDIT class styles (see Data Styles and Formats topic),    edit class
styles (see the Edit-control styles topic in the MS-Windows manual) and
the following styles: WS_TABSTOP, WS_GROUP, WS_VSCROLL,
WS_HSCROLL, and WS_DISABLED.    You can use the bitwise OR (|)
operator to combine styles.

x Specifies the x-coordinate of the left side of the control relative to the
left side of the dialog box. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the addition
(+) or subtraction () operator. The coordinate is assumed to be in
dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

y Specifies the y-coordinate of the top side of the control relative to the
top of the dialog box. This value must be an integer in the range 0
through 65,535 or an expression consisting of integers and the addition
(+) or subtraction () operator. The coordinate is assumed to be in
dialog units and is relative to the origin of the dialog box, window, or
control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 1    through 65,535 or an expression consisting of integers and
the addition (+) or subtraction () operator. The width is in 1/4-character
units.

height Specifies the height of the control. This value must be an integer in the
range 1 through 65,535 or an expression consisting of integers and the
addition (+) or subtraction () operator. The height is in 1/8-character
units.

Using the clipboard
FEDIT control allows user to copy, paste and reformat values using    the clipboard.

Function Hot key Comment

Copy <CNTL> <INS> The textual value of the control is copied to the clipboard along
with the internal information about the data style of the control.

Paste <SHIFT><INS> FEDIT will try to make the most sense out of data in the
clipboard. If the value in the clipboard has the same data style
as the receiving FEDIT control    then this value is reformatted
and placed    in the control. Otherwise FEDIT attempts to paste
text from the clipboard.    The new value of the control is always
correct for the data style of the receiving field, regardless of the
clipboard content.

Using the Symbolic Names
The FEDIT control allows an application programmer to specify an additional character
string, assosiated with the FEDIT control. The FEDIT Style Dialog Box in the Dialog Editor and
the Resource Workshop provide a field called name. This name is joined together with the
format string and placed into the controls window name. The format is separated from the
name with the special character \206 (decimal 134). The    Dialog Editor and the Resource
Workshop pack and unpack these two strings for you.    If you create the resource script
using a text editor, you should place both the format and    the name, separated by '\206',   
into the text part of the CONTROL statement.

You can specify any additional information into the name field and later access it from your
application using FM_GETNAMEand    messages or FxGetName and FxSetName extended
functions.    For example you can specify the maximum number, the user can enter into the
field and then compare the entered value with this number. In this case you will be able to
modify your program even without recompiling it.

FEDIT provides a special function FxDlgGetByName. This function assumes that the value
in the name field is a unique string within the dialog. It retrieves the control with the name,
that matches the string provided as a parameter.

Every FEDIT control has extended flags. These flags are not used by the control and can be
set, tested and cleared by the program. The initial value of these flags is zero.    You can
access these flags using FM_GETFLAG and FM_SETFLAG messages or FxGetFlag and
FxSetFlag extended functions.

Field validation
Null values

FEDIT control class supports a special    'NULL' value. It can be set and tested using extended
API functions FxSetNull and FxIsNull or FM_SETNULL and FM_ISNULL messages. The
NULL value causes FEDIT to suppress output of the picture clause or default value and
display an empty string. This value can be, but is not necessarily, used to represent a NULL
value in the database. User can enter this value into the FEDIT control by pressing <CTRL-
DEL>    keys. You may also specify NULL value as a default value for the FEDIT control by
selecting the radio button provided in the FEDIT Options dialog    box or by specifying
FS_INITNULL style.   

If a FEDIT control with NULL value looses focus a special notification message FN_NULL is
sent to its parent. A program can intercept this message to take appropriate action or just
ignore it.

If    data is required in a control then you can select a    NOT NULL    radio button    in the FEDIT
Options dialog box or specify FS_NONULL style. In this case FEDIT automatically checks the
value of the control and doesn't allow user to remove focus from it until data is entered. This
mechanism    forces a dialog or a window with an empty control to be temporary system
modal and thus should be used with caution.

See also:
FS_INITNULL style, FS_INITDFLT style, FS_NONULL style, FN_NULL
notification message, FM_SETNULL message, FM_ISNULL message,
FxDlgGetNull, FxDlgSetNull

Invalid values

In some cases FEDIT control cannot check the user input as it is being entered and needs
the whole value to be entered before the full validation can take place. For example, when
user enters 31 as the day of a month FEDIT can check it only after the month has been
entered.

FEDIT control class recognizes the following values as the invalid ones :

- Invalid date/time - the date/time value that does not make sense;
- Alphanumeric string with no data in the required positions.

The value of the control can be checked by using FxIsValid API function or all controls of the
dialog can be validated by a call to the FxDlgGetInvalid function.

If a FEDIT control with an invalid value looses focus the special notification message
FN_INVALID is sent to its    parent. A program can intercept this message to take appropriate
action or just ignore it.

If    the data must be validated at the time it has been entered and the control is about to
loose its focus then you can select the VALIDATE radio button in the FEDIT Options dialog
box or specify FS_VALIDATE style. In this case FEDIT automatically checks the validity of the
input data and does not allow the focus to be removed from the control until a valid data is
entered. This mechanism    forces a dialog or a window with an invalid control to be
temporary system modal and thus should be used with caution.

See also:
FS_VALIDATE style, FxIsValid, FxDlgGetInvalid

Custom control in the program
A program that uses a custom control DLL should load it before any control of that type is
created. There are two ways to do it:

- By using LoadLibrary() and FreeLibrary() API functions.
Specify "FEDIT.DLL" as an argument to the LoadLibrary() function.    It is sufficient to load
library once at the beginning of the program and free it at the end. You can also load and
free DLL every time you need it.
For example:

HANDLE hFeditLib = LoadLibrary("FEDIT.DLL");
if(hFeditLib >= 32)
{

...
FreeLibrary(hFeditLib);

}

- By calling any of the extended API functions. You should link your program with the
import library - FEDIT.LIB to be able to call any of these functions. This is a preferred way
since it does not require additional coding.    If you do not have any calls to the extended
API functions in your program you can insert a call to the FxGetEditMode() anywhere in
the program.

Data styles and formats
This section describes FEDIT data styles that are used to specify the data type, the level of
validation and the initial value of a control. All FEDIT styles can be combined with any of the
standard window and EDIT styles that are valid for a control. Only one FEDIT style from
every group can be specified. Here is a brief description of    FEDIT data styles:

Group Name Comment

Data style FS_ALPHANUM Defines a control that represents an arbitrary formatted
string.   

FS_NUMERIC Defines a control that represents a double value.
FS_DATE Defines a control that represents date and/or time.
FS_BOOLEAN Defines a control that represents a boolean value.
FS_EDIT Defines a control that represents an unformatted string.

Initialization FS_INITNULLCreates a control with NULL initial value.
FS_INITDFLT Creates a control with default initial value.

Validation FS_NONULL Prevents control from loosing focus when it's value is NULL
FS_VALIDATE Prevents control from loosing focus when it's value is invalid.

There is a special Formatting Mask that must be created for every data style. Each
Formatting mask uses its own set of special characters.

FS_ALPHANUM style
Use FS_ALPHANUM style to define a generic character string. This style is used to
represent names, phone numbers, social security numbers, licence plates and other fixed
alphanumeric strings.
The following    formatting characters are used for FS_ALPHANUM style:

UPPERCASE:
'A' Represents any alphabetic character, i.e.    'a'-'z' or 'A'-'Z' range.
'X' Represents any printable character.
'Z' Represents any alphanumeric character, this is a combination of 'A' and '9'.

LOWERCASE:
'a' Same as 'A'    for required    input.
'x' Same as 'X'    for required    input.
'z' Same as 'Z'    for required    input.

'9' Represents a digit (0 - 9).
'0' Represents a required digit (0 - 9).

For example,    a    formatting mask for zip code may specified as "00000-9999". This format
requires user to input first five digits of the zip code and optionally four more.

Note, that lowercase letters allow to input spaces, but    FxIsValid    API function returns
FALSE in this case.

Other characters are considered delimiters and display only. Use FS_INITNULL to suppress
display of delimiters when there is no data in the control. Delimiters are ignored by
FM_GETTEXT and FM_SETTEXT messages.

See also:
FS_NUMERIC, FS_DATE, FS_BOOLEAN,    FS_EDIT,    Field Validation

Examples:
(999) 999-9999 Phone number
999-99-9999 Social security number
00000-9999 Zip code with first five digits    required.

FS_NUMERIC style
Use    FS_NUMERIC style to define a double value.    This style is used to represent amounts,
currency, percentage and other numbers with fixed decimal point.
The following formatting characters are used for FS_NUMERIC style:

'9' Represents any digit, i.e. symbol from the '0'-'9' range. This character will be
replaced with an actual digit or a space for leading zero.

'S' Represents a sign. Whenever user presses plus/minus key FEDIT control will place
the sign in the appropriate position.

',' Represents a comma delimiter. A comma is not shown if    digits to the left of it are
zeros.

'.' Represents a decimal point. The decimal point separates the decimal part of the
number from the whole one.

Other symbols are considered delimiters and are display only. Use FS_INITNULL to suppress
display of delimiters when there is no data in the control. Delimiters are ignored by
FM_GETTEXT and FM_SETTEXT messages.

See also:
FS_ALPHANUM,    FS_DATE,    FS_BOOLEAN,    FS_EDIT

Examples:
999.99%
S9,999,999,999.9999
$9,999.99
S999,999,999£
{S999}

FS_DATE style
Use FS_DATE style todefine a date/time value.
The following formatting characters are used for FS_DATE style:

'mm' Represents a month in a decimal form, e.g '08'.
'dd' Represents a day of a month.
'yy' Represents a year without century, e.g. '92' .
'yyyy' Represents a year    with century, e.g. '1992'.
'hh' Represents an hour.
'xx' Represents a minute.
'ss' Represents a second.
'mmm' Represents a month in a string form, e.g. 'aug'.
'www' Represents a Day of the Week (e.g. 'tue'). The Day of the Week is set

automatically according to the date value and cannot be modified by a
user.

'am'
'pm' Represents a part of the day. When FEDIT finds any of these strings it

represent time in the 12 hours mode.

You may specify a capital letter instead of a lowercase letter.
For decimal formats FEDIT allows to input space in the uppercase position or replace a
character with a space when user deletes it. For example, 'Mm/Dd/yy' format suppresses
leading zeros for the month and date parts of the date. For string formats the case of the
formatting character specifies the case of the character displayed in the position. For
example 'Mmm' format specifies a capitalized month name, e.g. 'Aug'. You can specify more
characters in the string format todisplay the name of the month or day of the week, e.g.
'Mmmmmmmmm' will display as 'September'.

Other characters and substrings are considered delimiters and are display only.

See also:
FS_ALPHANUM, FS_NUMERIC, FS_BOOLEAN, FS_EDIT

Examples:
mm/dd/yy
Mmm dd, yyyy
dd-mm-yyyy (Www)
hh:nnam
DATE: MM/DD/YYYY    TIME: HH:NN:SS      DOW: Wwwwwwwww

FS_BOOLEAN style
Use FS_BOOLEAN style to define a boolean value.
The following formatting characters are used for FS_BOOLEAN style:

'Y' Represents Y/N (Y    is default).
'YYY' Represents YES/NO (YES is default).
'N' Represents Y/N (N is default).
'NNN' Represents YES/NO (NO is default).
'T' Represents T/F (T is default).
'TTTTT' Represents TRUE/FALSE (TRUE is default).
'F' Represents T/F (F is default).
'FFFFF' Represents TRUE/FALSE (FALSE is default).

You can combine lowercase and uppercase characters to display the case of a letter in the
same position

See also:
FS_ALPHANUM, FS_DATE, FS_NUMERIC, FS_EDIT

Examples:
'Yyy'
'N'
'Fffff'
't'

FS_EDIT style
Use FS_EDIT style to define unformatted input.    FS_EDIT style is generally used to
represent notes, memos and other unformatted data. This style is a similar to the standard
EDIT control and is included to provide consistent approach in handling all types of data. You
can use all FEDIT API functions and messages with this data style.

See also:
FS_ALPHANUM, FS_DATE, FS_NUMERIC, FS_BOOLEAN

FS_INITNULL
Use FS_INITNULL style to initialize the value of control to NULL.

User can enter this value into the FEDIT control by pressing <CTRL-DEL>    keys. You may
also specify NULL value as a default value for the FEDIT control by selecting the radio button
provided in the FEDIT Options dialog    box.   

If a FEDIT control with NULL value looses focus a special notification message FN_NULL is
sent to its parent. A program can intercept this message to take appropriate action or just
ignore it.

If    data is required in a control then you can select a    NOT NULL    radio button    in the FEDIT
Options dialog box or specify FS_NONULL style. In this case FEDIT automatically checks the
value of the control and doesn't allow user to remove focus from it until data is entered. This
mechanism    forces a dialog or a window with an empty control to be temporary system
modal and thus should be used with caution.

See also:
Null values, FS_INITDFLT

FS_INITDFLT
Use FS_INITDFLT style to initialize the value with the default value for the control's style:

Style Default value

FS_ALPHANUM String with delimiters in the specified positions.
FS_NUMERIC Zero.
FS_DATE Current date/time.
FS_BOOLEAN TRUE for the 'Y' and 'T' formats, FALSE otherwise.
FS_EDIT Empty string.

See also:
FS_INITNULL

FS_VALIDATE
FEDIT control created with the FS_VALIDATE style keeps control in focus until a valid data is
entered. The following values are considered invalid:

- Invalid date/time.
- Alphanumeric string with empty required positions.

Note:
FS_VALIDATE style forces a dialog or a window with an invalid control    temporary    into
system modal and thus should be used with caution.

See also:
Invalid values, FS_NONULL, FS_ALPHANUM

FS_NONULL
FEDIT control created with the FS_NONULL style keeps control in focus until    some data is
entered.

Note:
FS_NONULL style forces a dialog or a window with an empty control to be temporary
system modal and thus should be used with caution.

See also:
Null values, FS_VALIDATE

Application Programmer Interface
Messages
Control management functions
Date/Time functions
Formatting functions
Dialog box functions

Messages
FEDIT supports all EDIT standard messages and provides the following additional messages
that are sent to FEDIT by SendMessage and SendDlgItemMessage functions:

Message Description

FM_GETFORMAT Get control format string.
FM_SETFORMAT Set control format string.
FM_GETNAME Get control string name.
FM_SETNAME Set control string name.
FM_GETSTRING Get control value as an unformatted string.
FM_SETSTRING Set control value using unformatted string.
FM_GETDOUBLE Get control value as a double number.
FM_SETDOUBLE Set control value using a double number.
FM_GETLONG Get control value as a long number.
FM_SETLONG Set control value using a long number.
FM_GETTIME Get control value as a tm structure.
FM_SETTIME Set control value using tm structure.
FM_SETNULL Set control value to NULL .
FM_ISNULL Compare control value with NULL.
FM_GETFLAG Get user-defined flag or group of flags.
FM_SETFLAG Set user-defined flag or group of flags.

FEDIT also provides a set of notification messages that are sent to the FEDIT controls parent
if a special event takes place:

Notification Message Is sent when

FN_TOGGLEINS User presses Insert key.
FN_DBLCLK User double clicks on the control.
FN_ERROR Control with invalid value looses the input focus.
FN_NULL Control with NULL value looses the input focus.

Control management functions
The functions in this category provide format independent control input/output, type
checking and control validation functions and macros.    You can use these procedures along
with standard MS-Windows API functions. The following list briefly describes each custom
control management function:

Function Description

FxGetType Returns data style of a control.
FxGetString Retrieves a format independent string representation of the

controls text.
FxSetString Sets the text of a control using a format independent string value.
FxGetDouble Translates the text of a control into a double value.
FxSetDouble Sets the text of a control with the string representation of the

double value.
FxGetStringAs Retrieves the text of a control as a string in the provided format.
FxSetStringAs Sets the text of a control using a string in the specified format.
FxGetTime Retrieves the value of a control as a tm structure.
FxSetTime Sets the text of a control using a tm structure.
FxGetEditMode Returns the current editing mode (Insert/Overwrite).
FxSetEditMode Sets the editing mode (Insert/Overwrite).
FxGetFormat Retrieves the format of a control.
FxSetFormat Sets the format of a control and reformats the controls value.
FxGetLong Translates the text of a control into a long value.
FxSetLong Sets the text of a control to a string representation of the long

value.
FxGetFlag Retrieves the flags assosiated with a control.
FxSetFlag Sets the flags assosiated with a control.
FxGetName Retrieve the name of a control.
FxSetName Clears the value of a control by setting it to the NULL.
FxIsFEDIT Determines whether a control belongs to the FEDIT class.
FxIsValid Validates the value of a control.
FxIsBool macro Determines whether a control has a FS_BOOL style.
FxIsDate macro Determines whether a control has a FS_DATE style.
FxIsEdit macro Determines whether a control has a FS_EDIT style.
FxIsNumeric macro Determines whether a control has a FS_NUMERIC style.
FxIsString macro Determines whether a control has a FS_ALPHANUM style.
FxWasModified macro Determines whether the text of a control was modified by user.
FxClsModified macro Clears the modification flag of a control.
FxSetModified macro Sets the modification flag of a control.

Date and Time functions
The date and time functions allow you to convert date and/or time to a different formats.
These procedures are using the next types:

Type Description

LONG (time_t) Represents a number of seconds elapsed since midnight, January 1,
1970.    The negative value specifies the date before 01/01/1970. While
this representation is used by the most compilers, some of them may
use different starting date. Microsoft C/C++ ver 7.0 (only) uses
midnight, December 31, 1899 for this purpose.

LDATE Represents a number of days elapsed since January 1, 1970. The
negative value    is used to specify dates before 01/01/1970.

LTIME Represents a number of seconds elapsed since midnight.
struct tm This structure is defined in the TIME.H standard C/C++ header    file

and has next int fields:
tm_sec Seconds
tm_min Minutes
tm_hour Hours    (0-23)
tm_mday Day of month    (1-31)
tm_mon Month (0-11)
tm_year Year (current year minus 1900)
tm_wday Day of week (0-6)
tm_yday Day of year (0-365)
tm_isdist Not used    by these functions.

The current version of the FEDIT includes next date/time functions:

Routine Description

FxTDate Get LDATE value using time_t.
FxTTime Get LTIME value using time_t.
FxTMake Combine LDATE and LTIME into the time_t value.

FxTMon Get month (0 - 11) by a LDATE value
FxTDay Get day of month (1 - 31) by a LDATE value
FxTYear Get year    by a LDATE value
FxTDow Get day of week (0 - 6) by a LDATE value
FxTMakeDate Create LDATE value using day, month and year.

FxTHour Get hour (0 - 23) by a LTIME value
FxTMin    Get minute (0 - 59) by a LTIME value
FxTSec          Get second (0 - 59) by a LTIME value
FxTMakeTime Create LTIME value using hour, minute and second.

FxTttol Convert struct tm value into the LONG (time_t) value.
FxTltot Convert LONG (time_t) value into the tm structure.

FxTCMonth Convert a month    (0 - 11) into its string representation.
FxTDMonth Convert string representation of a month into number (0 - 11)

FxTCDow Convert a day of week (0 - 6) into its string representation.

FxTDDow Convert string representation of a day of week into number (0 - 6)

FxTIsLeapYear Check if year is a leap one.

Formatting Functions
FEDIT control library contains procedures and macros that provide the same format
conversions that FEDIT control, but can be used independent of    any control.    By using
these functions you can convert virtually any string into any other string, get string value or
create a new string using a provided value.

Function Description

FxFmtTranslate Translates a string from one format into another.
FxFmtGetString Retrieves a format independent value of the formatted string
FxFmtSetString Creates a formatted string using a format independent value

and a format.
FxFmtGetLong Retrieves a long representation of the formatted string.
FxFmtSetLong Creates a formatted string    using a long representation and a

format.

Dialog Box Functions

The functions in this section deal with a dialog box or a window rather then with a single
control. The following list briefly describes each dialog function:

Function Description
FxDlgGetByName Returns the handle to the control by it's name.
FxDlgGetInvalid Returns the handle of the first invalid control in the dialog or NULL, if

there are no invalid controls.
FxDlgGetModified Returns the handle of the first modified control in the dialog box or

NULL, if there are no modified controls.
FxDlgClrModified Clears modification flag for all FEDIT controls in the dialog box.
FxDlgSetNull Clears all FEDIT controls in the dialog box by sending FM_SETNULL

message to all of them.
FxDlgGetNull Returns the handle of the first control with Null value in the dialog or

NULL, if there are no empty controls.

